RAPID DELIVERY

Prototype orders ship in only 1 to 2 weeks

Flanged Metric Precision Ball Screws German Engineering, DIN 69051 & North American Manufacturing

Combining the engineering and performance of high-quality, German ball screws with North American manufacturing and logistics.

Only 2% of all ball screws sold in North America are manufactured here, so you'll be able to take advantage of shorter lead times, reduced shipping costs, and enhanced communication with support and service. Thomson metric ball screws provide the best in quality, performance and delivery at a competitive price.

German Engineered

- DIN 69051 compliant
- Patented Precision Screw Forming (PST) technology
- Smooth performance due to unique ball return systems

North American Manufactured

- Regionally stocked/machined/assembled product in Marengo, Illinios
- P5 accuracy screws standard
- Ground quality ball nuts

Metric Ball Nuts – Technical Specifications

Internal Return Flanged Ball Nut and Screw

- Flexible solution for standard mounting
- Integral wiper and flange included as standard
- Available in three preload classes (Type Z1, Z2, Z3)
 - Z1 light preload to 1-2%

Technical Specifications

- Z2 no preload, clearance held to max. indicated in table (standard unless specified)
- Z3 no preload, clearance held to max 0.05 mm

Nom.	Lead	Nut Form		Ball Screw P/N		Per	formance	Data							
Dia- meter					Dynamic Load Capacity		Static Load Capacity		Max Axial Backlash	Major Diameter	Minor Diameter	Std Length	Max Length	Screw Weight	
[mm]	[mm]				[kN]	[lbs]	[kN]	[lbs]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]	
16	5	Е	7106-448-061	195-9698	9.3	2091	13.1	2945	0.08	15.3	12.9	4000	6000	1.30	
16	10	Е	7106-448-062	195-9699	15.4	3462	26.5	5958	0.08	15.2	13.0	4000	6000	1.30	
20	5	Е	7107-448-063	195-9700	10.5	2361	16.6	3732	0.08	19.3	16.9	4000	6000	2.00	
25	5	Е	7110-448-064	195-9701	12.3	2765	22.5	5058	0.08	24.3	21.9	4000	6000	3.30	
25	10	Е	7110-448-065	195-9702	13.2	2968	25.3	5688	0.08	24.3	21.9	4000	6000	3.30	
25	20	S	7110-448-066	195-9703	13.0	2923	23.3	5238	0.15	24.4	22.0	4000	6000	3.30	
25	25	S	7110-448-067	195-9704	16.7	3754	32.2	7239	0.08	24.3	22.0	4000	6000	3.30	
32	5	Е	7112-448-069	195-9706	21.5	4834	49.3	11084	0.08	31.3	28.9	4000	6000	5.60	
32	10	Е	7112-448-070	195-9707	33.4	7509	54.5	12253	0.08	32.5	27.3	4000	6000	5.60	
32	20	Е	7112-448-071	195-9708	29.7	6677	59.8	13444	0.08	31.5	27.9	4000	6000	5.60	
40	5	Е	7115-448-073	195-9710	23.8	5351	63.1	14186	0.08	39.3	36.9	4000	6000	9.00	
40	10	Е	7115-448-074	195-9711	38.0	8543	69.1	15535	0.08	39.3	34.1	4000	6000	8.40	
40	20	Е	7115-448-075	195-9712	33.3	7487	76.1	17109	0.08	39.5	35.9	4000	6000	9.00	
40	40	S	7115-448-076	195-9713	35.0	7869	101.9	22909	0.08	38.7	36.3	4000	6000	9.00	
50	10	Е	7120-448-077	195-9714	68.7	15445	155.8	35027	0.08	49.3	44.1	4000	6000	13.50	

1. P3 accuracy class is \pm 12 μm / 300 mm and is available upon request.

2. Dimension does not comply with DIN 69051.

3. Round flange.

Technical Specifications

Nom.	Lead			Nut Specifications											
Dia- meter		Hole Pattern	D1 g6	D4	D5	D6	L1	L2	L6	L7	L8	L10	Lube Hole (G)	No.of Circuits	Ball Diameter
[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	(0)	GIICUILS	[mm]
16	5	1	28	38	6	48	10	42	-	10	40	5	M6x1	3	3.500
16	10	1	28	38	6	48	10	55	-	10	40	5	M6x1	6	3.000
20	5	1	36	47	7	58	10	42	-	10	44	5	M6x1	3	3.500
25	5	1	40	51	7	62	10	42	-	10	48	5	M6x1	3	3.500
25	10	1	40	51	7	62	16	55	-	10	48	5	M6x1	3	3.500
25	20	1	40	51	7	62	4	35	10.5	10	48	5	M6x1	4	3.500
25	25	1	40	51	7	62	9	35	8	10	N/A ^[3]	5	M6x1	5	3.500
32	5	1	50	65	9	80	10	55	-	12	62	6	M6x1	5	3.500
32	10	1	53[2]	65	9	80	16	69	-	12	62	6	M8x1	3	7.140
32	20	1	53[2]	65	9	80	16	80	-	12	62	6	M6x1	4	5.000
40	5	2	63	78	9	93	10	57	-	14	70	7	M6x1	5	3.500
40	10	2	63	78	9	93	16	71	-	14	70	7	M8x1	3	7.140
40	20	2	63	78	9	93	16	80	-	14	70	7	M8x1	4	5.000
40	40	2	63	78	9	93	16	85	7.5	14	N/A ^[3]	7	M8x1	8	3.500
50	10	2	75	93	11	110	16	95	-	16	85	8	M8x1	5	7.140

How to Order

This ordering key provides a quick overview of the metric ball screw assemblies available. To explore additional technical resources and options, contact Thomson customer support.

											_	
1	2	3	4	5	6	7	8	9	10	11	12	13
RM	25	10	F	Z2-	271.5	L	W-	BK	S	К	X	
1. Nut Config RM = Metric 2. Nominal t 10 = 10 mm 12 = 12 mm 16 = 16 mm 20 = 20 mm 25 = 25 mm 32 = 32 mm 40 = 40 mm 50 = 50 mm 33 = 63 mm 30 = 80 mm 3. Thread le : 02 = 2 mm 03 = 3 mm 04 = 4 mm 05 = 5 mm 10 = 10 mm 20 = 20 mm	hread diamet	T = Thi R = Cy FD = Fi FK = Fi FN = F MD = I MG = 5. Nut Z1 = L Z2 = S Z3 - E 6. Thri xxx.x- 7. Nu R = Nu L = Nu X = Nu X = Nu	nged internal ba readed internal lindrical interna langed (DIN 692 langed metal ba langed, polymer Flanged (DIN 692 Threaded, meta assembly cor ight preload (1- Standard backla Backlash reduce eaded length = Lenght (mm) ut orientation It faces right en t faces left end t ships on arbor	ball return (TSI I ball return (RS 151) internal ba Ill return r ball return 0051), polymer I I ball return ndition 2%) sh d (0.05 mm ma d) SI) ll return ball return x.) 	9. Left end con X = Cut to lengtl $X = Machine to3K = Base mour 3K1 = Base mour 3K1 = Base mour5K = Floating ba 5K = Floating tha 5K = Flange mour2K1 = Floating fla 2K = Base mour2K1 = Base mour 2K1 = Base mour2K1 = Base mour 2K1 = Base mour2K1 = Base mour2K1 = Base mour 2K1 = Base mour2K1 = Base mour2K1 = Base mour2K1 = Base mour 2K1 = Base mour 2K1 = Base mour2K1 = Base mour 2K1 = Base mour 2K1 = Base mour2K1 = Base mour 2K1 = Base mour2K1 = Base mour 2K1 = Base mour2K1 = Base mour$	n print with drive t with drive mt without drive se mount with ase mount with int with drive nunt without driving mount with it with drive int without driving se mount with y flange with drive int with drive se mount with y flange with drive int with drive se mount with drive support confi machined only)	Trive nout drive drive hout drive e drive nout drive rive ut drive guration	X = Cut K = Ma BK = B; BK1 = F BF = Flic FF = Flic FF1 = F QK1 = I QF = Fli QK1 = I QK1 = I WK = K WK1 = MK = N X = No S = Sup 13. Cu	Floating base r ange mount w lange mount w boating flange m loating flange m ase mount wit Base mount wit Base mount w pating base m Floating base m Floating base m Floating base m Floating base m Heavy duty fla Alotor mount w support (mach opport installed stom Modifie Standard	with drive h drive ithout drive oount with drive nount without drive nount without drive nount without drive mount without drive nount with drive mount without drive ange without drive ith drive pport configur ined only) on machined su	drive Irive ve ation

Code Example: RM2510FZ2-271.5LW-BKSKX

This describes a standard lashed Ø25 x 10 mm FSI ball screw assembly that is 271.5 mm in threaded length with a BK bearing support on the left side with drive extension, BK end bearing support without drive on the right side. The flange faces the left side (the side with the drive extension). NOTE: Not all bearing supports are available in all sizes. See catalog or contact customer support for available combinations.

Express Prototypes, Less Lead Time

Prices and lead times are generally higher with other products as 98% of rolled metric ball screws are manufactured outside of North America.

Thomson provides expert application support and the ability to rapidly prototype designs by combining North American manufacturing of metric products with the engineering support of a trusted brand.

USA, CANADA and MEXICO

Thomson Customer Support 203A West Rock Road Radford, VA 24141, USA Phone: 1-540-633-3549 Fax: 1-540-633-0294 E-mail: thomson@thomsonlinear.com Literature: literature.thomsonlinear.com

www.thomsonlinear.com

Don't pay extra to wait.

Order your Thomson prototype with delivery from our North American facility in Marengo:

	Standard Lead Time	Express Lead Time (Qualified Prototypes)
Components	2 - 3 days	1 day
Machined Assemblies	2 - 4 weeks	1 - 2 weeks

Thomson Marengo, IL USA

ISO 9001 certified, 88,000 sq. ft. facility manufacturing Linear Actuators, Ball Screws, Linear Bearings & Shafting, and Step Motors. Founded in 1967, currently with 220 employees.

Linear Motion. **Optimized.****